Step of Proof: mul_preserves_lt
12,41
postcript
pdf
Inference at
*
1
2
I
of proof for Lemma
mul
preserves
lt
:
.....upcase..... NILNIL
1.
a
:
2.
b
:
3.
a
<
b
4.
n
:
5. 1 <
n
6. ((
n
- 1) *
a
) < ((
n
- 1) *
b
)
(
n
*
a
) < (
n
*
b
)
latex
by ((OnMHyps [3;6] (Rewrite (LemmaC `lt_to_le_rw`)))
CollapseTHENA ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
3. (
a
+1)
b
C1:
4.
n
:
C1:
5. 1 <
n
C1:
6. (((
n
- 1) *
a
)+1)
((
n
- 1) *
b
)
C1:
(
n
*
a
) < (
n
*
b
)
C
.
Definitions
t
T
,
P
&
Q
,
{
T
}
,
x
:
A
.
B
(
x
)
,
P
Q
,
P
Q
Lemmas
lt
to
le
rw
origin